

CURRICULUM VITAE – Prof Richard Walls

Nationality	South African
Current Occupation	Full Professor – Stellenbosch University
E-mail address	rwalls@sun.ac.za
Languages	English (Excellent). Afrikaans. Basic Biblical Greek.
YouTube Channel	https://www.youtube.com/channel/UCUZH8qYZwKToJa6n2T9FhyA
FireSUN Channel	https://www.youtube.com/channel/UCv1bBnE4i6eiuYFBEDO3K1Q

QUALIFICATIONS AND REGISTRATIONS

PhD (Civil Engineering)	Stellenbosch University. 2013-2016.
MSc (Structural) (with distinction):	University of the Witwatersrand. 2009-2010.
G.D.E. (with distinction):	University of the Witwatersrand. 2009-2010.
BSc.Eng (Civil) (with distinction):	University of the Witwatersrand. 2005-2008
Pr. Eng.:	Registered as a professional engineer with ECSA. 2014.
BTh (with distinction):	SA Theological Seminary – Part-time studies. 2006-2013.

SUMMARY

Prof Richard Walls is the head of the fire engineering team at Stellenbosch University, Africa's first research team with a focus on fire engineering and structural fire design. Various fire related topics are currently being investigated, such as the design of steel structures in fire, analysis of structures in fire, forensic fire investigations, 3D printed concrete in fire, material behaviour, multi-storey timber fires and informal settlement fire behaviour. Full-scale fire tests on shacks have been conducted on around seventy homes to understand fire behaviour, spread and how to reduce the impact of such fires. Consulting work has been done for companies developing rational structural fire design systems, ascertaining the fire resistance of products, repairing fire-damaged structures (including high-profile National Key Points), forensic investigations and technical guidance on fire safety specifications. He was part of the team analysing the Knysna fire disaster, sponsored by Santam, and specifically considered why almost 1000 homes were lost in South Africa's largest wildland fire disaster. His research has been covered by multiple newspapers, radio stations and websites. His team has developed Masters and PhD programmes in fire safety engineering. He runs postgraduate courses on structural fire engineering, fire dynamics and fire safety.

His team has published around 100 journal / conference / book chapters / technical papers, including the first technical guideline in the world for fire safety in informal settlements. He has contributed to publications by the World Bank, United Nations and various other organisations. He led the writing of South Africa's first infrastructure report card on fire safety infrastructure. He is an honorary fellow of the SA Institute of Civil Engineering (SAICE), and member of various committees including NFPA Research Foundation, SABS technical codes, SAICE Fire Division and SFPE South Africa. He serves as a reviewer for numerous international journals including Fire Technology, Fire Safety, Fire & Materials, Science & Justice, etc.

AWARDS & AFFILIATIONS

- SFPE (USA) Lucht Award for Contributions to Education - 2025
- SAICE Engineer of the Year - 2024.
- TW Kambule-NSTF Award: Emerging researcher of the year in South Africa in 2020. The national NSTF-South32 Awards are the largest Science, Engineering & Technology & Innovation (SETI) awards in South Africa, known as the 'Science Oscars'.
- Honorary Fellow of the SA Institute of Civil Engineering (SAICE) – 2021
- Excellence in Structural Engineering Education Award – Institution of Structural Engineering, UK – 2021.
- Academic of the year award – Faculty of Engineering, Stellenbosch University – 2019
- Emerging researcher of the year award – Faculty of Engineering, Stellenbosch University – 2017
- Best post-graduate thesis award – Department of Civil Engineering, Stellenbosch University – 2016
- Committee member – National Fire Protection Association (NFPA, USA) Foundation – Research advisory board
- Committee member – SAICE Fire Engineering Division
- Committee members – SABS technical committees for fire standards
- Member of the International Association of Fire Safety Scientists (IAFSS), Society for Fire Protection Engineers (SFPE), SA Institute of Civil Engineering (SAICE), Fire Protection Association of SA (FPASA).

LEGAL, INVESTIGATIONS & DISASTER RESPONSE

Prof Walls regularly consults to industry on a wide variety of topics, including legal disputes and forensic investigations. In the past 5 years approximately R5bn worth of investigational and forensic projects have been completed including functions including acting as an expert witness, carrying out fire spread analysis, event reconstruction, fire modelling, informing public safety and more.

Detailed input was provided, including explosion calculations, on the Johannesburg Bree Street blast in 2023. Technical review and expert input were provided regarding the Beirut Blast, based on investigational work conducted by Kindling and Forensic Architecture. Detailed analyses and extensive technical investigations were conducted following the Johannesburg General Charlotte Maxeke Academic Hospital fire as well as the 2017 Knysna wildfire which destroyed 1000 homes. He completed investigations regarding a long-lasting fire in a 3000t grain silo. A student research project has been completed on the Boksburg Blast, analysing the incident and blast mechanism. A separate project investigated the fire safety of public transport infrastructure following significant numbers of arson attacks, leading to recommendations being provided to the executive leadership of a State Owned Enterprise.

In 2024 he assisted Disaster Management during the collapse of a multi-storey building in George, South Africa. Technical support was provided as a structural engineer to try guide operations and keep teams on site safe during extremely dangerous conditions, with people trapped under thousands of tons of rubble.

PUBLICATIONS & RESEARCH

PhD Thesis – “A beam finite element for the analysis of structures in fire”

An analysis methodology and beam finite element has been developed which allows for the simplified design of structures in fire. This thesis was completed under the supervision of Dr Hennie de Clercq and Prof Celeste Viljoen. Refer to the end of this document for the abstract of this thesis, or to <http://scholar.sun.ac.za/handle/10019.1/100331>.

Journal Papers (peer-reviewed academic):

- [1] A. Elvin, R. Walls, D. Cromberge, Optimising structures using the principle of virtual work, *Journal of the South African Institution of Civil Engineering* 51 (2009).
- [2] R. Walls, A. Elvin, An algorithm for grouping members in a structure, *Eng Struct* 32 (2010) 1760–1768. <https://doi.org/10.1016/j.engstruct.2010.02.027>.
- [3] R. Walls, A. Elvin, Automated structural design and optimisation, *The Structural Engineer* 88 (2010) 30–34.
- [4] R. Walls, A. Elvin, Mass and stiffness distributions in optimized ungrouped unbraced frames, *International Journal of Steel Structures* 10 (2010). <https://doi.org/10.1007/BF03215833>.
- [5] R. Walls, A. Elvin, Optimizing Structures Subject to Multiple Deflection Constraints and Load Cases Using the Principle of Virtual Work, *Journal of Structural Engineering* 136 (2010) 1444–1452. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0000246](https://doi.org/10.1061/(ASCE)ST.1943-541X.0000246).
- [6] R.S. Walls, C. Viljoen, A comparison of technical and practical aspects of Eurocode 3-1-1 and SANS 10162-1 hot-rolled steelwork design codes, *Civ Engr S Afr* 58 (2016) 16–25. <https://doi.org/10.17159/2309-8775/2016/v58n1a2>.
- [7] R.S. Walls, C. Viljoen, H. de Clercq, G.C. Clifton, Reliability Analysis of the Slab Panel Method (SPM) for the Design of Composite Steel Floors in Severe Fires, *Journal of Structural Fire Engineering* 8 (2017) 84–103. <https://doi.org/10.1108/JSFE-01-2017-0008>.
- [8] R. Walls, G. Olivier, R. Eksteen, Informal settlement fires in South Africa: Fire engineering overview and full-scale tests on “shacks,” *Fire Saf J* 91 (2017) 997–1006. <https://doi.org/10.1016/j.firesaf.2017.03.061>.
- [9] W.J. van Jaarsveldt, R.S. Walls, E. van der Klashorst, Experimental Testing and Finite Element Modelling of Steel Columns Weakened to Facilitate Building Demolition, *International Journal of Steel Structures* 18 (2018) 1483–1496. <https://doi.org/10.1007/s13296-018-0049-3>.
- [10] R.S. Walls, C. Viljoen, H. de Clercq, Analysis of Structures in Fire as Simplified Skeletal Frames Using a Customised Beam Finite Element, *Fire Technol* 54 (2018) 1655–1682. <https://doi.org/10.1007/s10694-018-0762-7>.
- [11] A. Cicione, R.S. Walls, C. Kahanji, Experimental Study of Fire Spread Between Multiple Full Scale Informal Settlement Dwellings, *Fire Saf J* 105 (2019) 19–27. <https://doi.org/10.1016/j.firesaf.2019.02.001>.
- [12] H. Marx, R. Walls, Thermal behaviour of a novel non-composite cellular beam floor system in fire, *Journal of Structural Fire Engineering* 10 (2019) 354–372. <https://doi.org/10.1108/JSFE-10-2018-0032>.
- [13] M. Kloos, R.S. Walls, Finite Element Modelling of the Structural Behaviour of a Novel Cellular Beam Non-composite Steel Structure in Fire, *International Journal of Steel Structures* (2019). <https://doi.org/10.1007/s13296-019-00215-5>.
- [14] R.S. Walls, R. Eksteen, C. Kahanji, A. Cicione, Appraisal of fire safety interventions and strategies for informal settlements in South Africa, *Disaster Management & Prevention* 28 (2019) 343–358. <https://doi.org/10.1108/DPM-10-2018-0350>.
- [15] R. Walls, C. Viljoen, H. de Clercq, A nonlinear, beam finite element with variable, eccentric neutral axis, *Eng Struct* 187 (2019) 341–351. <https://doi.org/10.1016/j.engstruct.2019.02.056>.
- [16] C. Kahanji, R.S. Walls, A. Cicione, Fire spread analysis for the 2017 Imizamo Yethu informal settlement conflagration in South Africa, *International Journal of Disaster Risk Reduction* 39 (2019). <https://doi.org/10.1016/j.ijdrr.2019.101146>.
- [17] R. Walls, C. Viljoen, H. De Clercq, Parametric investigation into the cross-sectional stress-strain behaviour, stiffness and thermal forces of steel, concrete and composite beams exposed to fire, *Journal of Structural Fire Engineering* 11 (2019) 100–117. <https://doi.org/10.1108/JSFE-10-2018-0031>.
- [18] A. Cicione, M. Beshir, R.S. Walls, D. Rush, Full-Scale Informal Settlement Dwelling Fire Experiments and Development of Numerical Models, Springer US, 2019. <https://doi.org/10.1007/s10694-019-00894-w>.

[19] Y. Wang, C. Bertrand, M. Beshir, C. Kahanji, R. Walls, D. Rush, Developing an experimental database of burning characteristics of combustible informal dwelling materials based on South African informal settlement investigation, *Fire Saf J* 111 (2020) 102938. <https://doi.org/10.1016/j.firesaf.2019.102938>.

[20] N. de Koker, R.S. Walls, A. Cicione, Z.R. Sander, S. Löffel, J.J. Claassen, S.J. Fourie, L. Croukamp, D. Rush, 20 Dwelling Large-Scale Experiment of Fire Spread in Informal Settlements, *Fire Technol* 56 (2020) 1599–1620. <https://doi.org/10.1007/s10694-019-00945-2>.

[21] S. Löffel, R. Walls, Development of a full-scale testing methodology for benchmarking fire suppression systems for use in informal settlement dwellings, *International Journal of Disaster Risk Reduction* 45 (2020) 101451. <https://doi.org/10.1016/j.ijdrr.2019.101451>.

[22] S.A. Löffel, R.S. Walls, Determination of water application rates required for communities to suppress post-flashover informal settlement fires based on numerical modelling and experimental tests, *Fire Mater* 44 (2020) 609–623. <https://doi.org/10.1002/fam.2825>.

[23] S. van der Westhuyzen, R. Walls, N. de Koker, Fire tests of South African cross-laminated timber wall panels: fire ratings, charring rates, and delamination, *Journal of the South African Institution of Civil Engineering* 62 (2020) 33–41. <https://doi.org/10.17159/2309-8775/2020/v62n1a4>.

[24] J.F. Volkmann, R.S. Walls, N. de Koker, Implementation of the fire beam element method into OpenSees for the analysis of structures in fire, *Advances in Structural Engineering* (2020) 1–12. <https://doi.org/10.1177/1369433220933451>.

[25] D. Rush, G. Bankoff, S.-J. Cooper-Knock, L. Gibson, L. Hirst, S. Jordan, G. Spinardi, J. Twigg, R.S. Walls, Fire risk reduction on the margins of an urbanizing world, *Disaster Prevention and Management: An International Journal* 29 (2020) 747–760. <https://doi.org/10.1108/DPM-06-2020-0191>.

[26] A. Cicione, L. Gibson, C. Wade, M. Spearpoint, R. Walls, D. Rush, Towards the Development of a Probabilistic Approach to Informal Settlement Fire Spread Using Ignition Modelling and Spatial Metrics, *Fire* 3 (2020) 67. <https://doi.org/10.3390/fire3040067>.

[27] A. Cicione, R.S. Walls, Towards a simplified fire dynamic simulator model to analyse fire spread between multiple informal settlement dwellings based on full-scale experiments, *Fire Mater* 45 (2021) 720–736. <https://doi.org/10.1002/fam.2814>.

[28] R.S. Walls, A. Cicione, B. Messerschmidt, K. Almand, Africa: Taking fire safety forwards, *Fire Mater* 45 (2021) 999–1007. <https://doi.org/10.1002/fam.2894>.

[29] A. Cicione, J. Kruger, R.S. Walls, G. Van Zijl, An experimental study of the behavior of 3D printed concrete at elevated temperatures, *Fire Saf J* 120 (2021) 103075. <https://doi.org/10.1016/j.firesaf.2020.103075>.

[30] N. Flores Quiroz, R. Walls, A. Cicione, Developing a framework for fire investigations in informal settlements, *Fire Saf J* 120 (2021) 103046. <https://doi.org/10.1016/j.firesaf.2020.103046>.

[31] A. Cicione, C. Wade, M. Spearpoint, L. Gibson, R. Walls, D. Rush, A preliminary investigation to develop a semi-probabilistic model of informal settlement fire spread using B-RISK, *Fire Saf J* 120 (2021) 103115. <https://doi.org/10.1016/j.firesaf.2020.103115>.

[32] A. Cicione, R. Walls, Z. Sander, N. Flores, V. Narayanan, S. Stevens, D. Rush, The Effect of Separation Distance Between Informal Dwellings on Fire Spread Rates Based on Experimental Data and Analytical Equations, *Fire Technol* 57 (2021) 873–909. <https://doi.org/10.1007/s10694-020-01023-8>.

[33] N. Flores Quiroz, R. Walls, A. Cicione, M. Smith, Fire incident analysis of a large-scale informal settlement fire based on video imagery, *International Journal of Disaster Risk Reduction* 55 (2021) 102107. <https://doi.org/10.1016/j.ijdrr.2021.102107>.

[34] N. Flores Quiroz, R. Walls, A. Cicione, Towards Understanding Fire Causes in Informal Settlements Based on Inhabitant Risk Perception, *Fire* 4 (2021) 39. <https://doi.org/10.3390/fire4030039>.

[35] N. Flores Quiroz, R. Walls, A. Cicione, M. Smith, Application of the Framework for Fire Investigations in Informal Settlements to large-scale real fire events – Consideration of fire formation patterns, fire spread rates and home survivability, *Fire Saf J* 125 (2021). <https://doi.org/10.1016/j.firesaf.2021.103435>.

[36] S.M. Shuttleworth, N. De Koker, R.S. Walls, Insulation Resistance Time Reference Curves for Specifying Passive Fire Protection for Modular Structures from Shipping Containers, *Fire Technol* 58 (2022) 133–147. <https://doi.org/10.1007/s10694-021-01143-9>.

[37] A. Cicione, R. Walls, S. Stevens, Z. Sander, N. Flores, V. Narayanan, D. Rush, An Experimental and Numerical Study on the Effects of Leakages and Ventilation Conditions on Informal Settlement Fire Dynamics, *Fire Technol* (2021). <https://doi.org/10.1007/s10694-021-01136-8>.

[38] V. Narayanan, R.S. Walls, Reduced-scale experiments and numerical simulations of informal settlement dwelling fires, *Progress in Scale Modeling, an International Journal* 3 (2022) 1–16. <https://doi.org/10.13023/psmij.2022.03-01-01>.

[39] V. Narayanan, A. Oguaka, R.S. Walls, Reduced Scale Experiments on Fire Spread Involving Multiple Informal Settlement Dwellings, *Fire* 5 (2022) 199. <https://doi.org/10.3390/fire5060199>.

[40] J. Claasen, R. Walls, A. Cicione, D. Streicher, Structural behaviour of a novel modular cellular steel beam system at elevated temperatures based on large-scale experimental testing and numerical modelling, *J Constr Steel Res* 197 (2022) 107512. <https://doi.org/10.1016/j.jcsr.2022.107512>.

[41] A. Cicione, R. Walls, The effect of shear connectors on the strength, serviceability and dynamic response of composite floors using cold-formed steel beams and concrete in decking, *Eng Struct* 269 (2022) 114806. <https://doi.org/10.1016/j.engstruct.2022.114806>.

[42] T. Kiran, N. Anand, M.E. Mathews, A.D. Andrushia, R. Walls, B. Kanagaraj, E. Iubloy, Post-fire behaviour and improving the performance of hot rolled open sections subjected to standard fire exposure, *Case Studies in Construction Materials* 16 (2022) e01021. <https://doi.org/10.1016/j.cscm.2022.e01021>.

[43] R. Pharoah, P. Zweig, R. Walls, R. Eksteen, Smoke Alarms for Informal Settlements: Monitoring and Challenges from a Large-Scale Community Rollout in Cape Town, South Africa, *International Journal of Disaster Risk Science* 13 (2022) 936–947. <https://doi.org/10.1007/s13753-022-00457-8>.

[44] L. Strauss, R. Walls, Modeling of Composite Structures in Fire Using a Coupled Skeletal Frame and Floor System Analysis: Slab Panel Method, *Journal of Structural Engineering* 149 (2023) 1–13. <https://doi.org/10.1061/JSENDH.STENG-11807>.

[45] Y.W. Shewalul, N.F. Quiroz, D. Streicher, R. Walls, Fire behavior of hemp blocks: A biomass-based construction material, *Journal of Building Engineering* 80 (2023) 108147. <https://doi.org/10.1016/j.jobe.2023.108147>.

[46] L. Smit, A. van Wyk, J. van Wyk, O. Heynes, A. Miller, R. Walls, N. Flores-Quiroz, Developing a multi-disciplinary approach to risk-based mapping (RBM) in an onshore refinery: A case study on optimal gas detector placement, *J Loss Prev Process Ind* 81 (2023). <https://doi.org/10.1016/j.jlp.2022.104965>.

[47] A. Oguaka, N. Flores Quiroz, R. Walls, Fire parameters, behaviour, and comparative thermal hazard of food grains based on the cone calorimeter tests, *Process Safety and Environmental Protection* (2023). <https://doi.org/10.1016/j.psep.2023.03.078>.

[48] A. Oguaka, N. Flores Quiroz, R. Walls, Comparative pyrolysis characteristics and kinetics of agricultural food grains by thermogravimetric analysis, *Process Safety and Environmental Protection* 179 (2023) 559–574. <https://doi.org/10.1016/j.psep.2023.09.047>.

[49] C. Devine, N. Flores, R. Walls, Literature review and hazard identification relating to fire safety in commercial plastic recycling facilities, *J Fire Sci* 41 (2023) 269–287. <https://doi.org/10.1177/07349041231199894>.

[50] J. Daniel Oosthuizen, A. John Babaem, R. Shaun Walls, 3D-printed recycled plastic eco-aggregate (Resin8) concrete, *Constr Build Mater* 408 (2023) 133712. <https://doi.org/10.1016/j.conbuildmat.2023.133712>.

[51] A.D. Botha, R.S. Walls, N. Flores-Quiroz, A.J. Babaem, Behaviour of concrete building units incorporating waste plastic eco-aggregate (RESIN8) subjected to fire conditions, *Journal of Building Engineering* 76 (2023). <https://doi.org/10.1016/j.jobe.2023.107393>.

[52] J. Claasen, A. Cicione, D. Streicher, R. Walls, Behavior of a Composite Steel Decking and Boarding System in Fire Based on Large-Scale Experimental Testing and Numerical Modelling, *Fire Technol* 59 (2023) 2389–2414. <https://doi.org/10.1007/s10694-023-01443-2>.

[53] N. Flores Quiroz, R. Walls, P. Chamberlain, G. Tan, J. Milke, Incident Report and Analysis of the 2021 Cox's Bazar Rohingya Refugee Camp Fire in Bangladesh, *Fire Technol* 2 (2023). <https://doi.org/10.1007/s10694-023-01406-7>.

[54] N. Flores Quiroz, L. Gibson, W.S. Conradie, P. Ryan, R. Heydenrych, A. Moran, A. van Straten, R. Walls, Analysis of the 2017 Knysna fires disaster with emphasis on fire spread, home losses and the influence of vegetation and weather conditions: A South African case study, *International Journal of Disaster Risk Reduction* 88 (2023). <https://doi.org/10.1016/j.ijdrr.2023.103618>.

[55] M. du Plessis, D. Sulon, D. Streicher, R. Walls, Experimental testing on timber connections considering the influence of gap size and intumescent sealants, *Fire Mater* 48 (2024) 39–61. <https://doi.org/10.1002/fam.3164>.

[56] A. Oguaka, N. Flores-Quiroz, R. Walls, Radiative ignition properties of food grains and surface temperatures at ignition, *J Fire Sci* 42 (2024) 340–359. <https://doi.org/10.1177/07349041231220840>.

[57] C. Devine, N. Flores-Quiroz, R. Walls, C. Kuhn, Fire parameters of recycled plastic pellets, *Fire Mater* 49 (2025) 127–137. <https://doi.org/10.1002/FAM.3248>.

[58] Y.W. Shewalul, N. Flores Quiroz, R. Walls, Fire performance of sustainable concrete bricks with combustible recycled waste in masonry systems, *Journal of Structural Fire Engineering* (2025) 1–23. <https://doi.org/10.1108/JSFE-03-2025-0005/1272379>.

[59] M. du Plessis, D. Streicher, R. Walls, Experimental Testing on Concealed Beam Hanger Mass Timber Connections Considering the Influence of Gap Size and Intumescent Sealants: Testing on Timber Concealed Connections Considering Gap Size and Sealants, *Fire Technol* (2025) 1–26. <https://doi.org/10.1007/S10694-025-01782-2/FIGURES/18>.

[60] N.F. Quiroz, R. Walls, The Influence of COVID-19 Alcohol Ban on Residential Fires in Cape Town, South Africa, *International Journal of Fire Science and Engineering* 39 (2025) 82–92. <https://doi.org/10.7731/KIFSE.FFB9284B>.

- [61] M. du Plessis, D. Sulon, R. Walls, Numerical Modelling of Timber Connections Considering the Influence of Gap Size and Intumescent Sealants, *Fire Mater* 49 (2025) 878–903. <https://doi.org/10.1002/FAM.3300>.
- [62] Y.W. Shewalul, R. Walls, Heat transfer modelling and determination of material properties for sustainable masonry systems containing combustible materials in fire, *Eng Struct* 327 (2025) 119630. <https://doi.org/10.1016/J.ENGSTRUCT.2025.119630>.
- [63] Y.W. Shewalul, N. Flores Quiroz, R. Walls, Thermal Analysis and Fire Property Quantification of Crumb Rubber and Plastic Eco-Aggregates for Sustainable Construction, *Fire Mater* (2024). <https://doi.org/10.1002/fam.3259>.

Conference Papers (peer-reviewed academic):

- [1] R.S. Walls, A.A. Elvin, A search algorithm for optimizing the grouping of members, in: *Advances and Trends in Structural Engineering, Mechanics and Computation - Proceedings of the 4th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2010*, CRC Press/Balkema, 2010: pp. 1121–1124.
- [2] R.S. Walls, A.A. Elvin, The virtual work optimization method applied to structures: An investigation into cellular beams versus trusses, in: *Advances and Trends in Structural Engineering, Mechanics and Computation - Proceedings of the 4th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2010*, CRC Press/Balkema, 2010: pp. 1113–1116.
- [3] R.S. Walls, S.E. Ekolu, An investigation into failures and problems of industrial floors on the ground - With an emphasis on case studies, in: *Concrete Repair, Rehabilitation and Retrofitting III - Proceedings of the 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR 2012*, 2012.
- [4] R. Walls, C. Viljoen, H. de Clercq, J. Retief, A critical review on current and proposed structural fire engineering codes for steelwork in South Africa, in: S.O. Ekolu et al (Ed.), *Construction Materials & Structures*, IOS Press, Johannesburg, 2014: pp. 1134–1140.
- [5] R.S. Walls, M. Botha, Towards a Structural Fire Loading Code for Buildings in South Africa, in: A. Zingoni (Ed.), *Insights and Innovations in Structural Engineering, Mechanics and Computation*, Taylor & Francis, Cape Town, 2016: pp. 1761–5.
- [6] R.S. Walls, Teaching structural analysis and design: Evaluation and student feedback on various techniques and interventions, in: A. Zingoni (Ed.), *Insights and Innovations in Structural Engineering, Mechanics and Computation*, Taylor & Francis, Cape Town, 2016: pp. 2169–74.
- [7] W.J. Van Jaarsveldt, R.S. Walls, Predicting the failure load of steel columns weakened to facilitate demolition of a structure, in: *Insights and Innovations in Structural Engineering, Mechanics and Computation - Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2016*, CRC Press/Balkema, 2016: pp. 1190–1195.
- [8] R.S. Walls, Demolition of steel structures: structural engineering solutions for a more sustainable construction industry, in: Y. Bahei-El-Din, M. Hassan (Eds.), *Advanced Technologies for Sustainable Systems*, Springer, Cairo, 2017: pp. 3–8. https://doi.org/10.1007/978-3-319-48725-0_1.
- [9] R.S. Walls, P. Zweig, Towards sustainable slums: understanding fire engineering in informal settlements, in: Y. Bahei-El-Din, M. Hassan (Eds.), *Advanced Technologies for Sustainable Systems*, Springer, Cairo, 2017: pp. 93–98. <https://doi.org/10.1007/978-3-319-48725-0>.
- [10] L.L. Gibson, D. Rush, O. Wheeler, R. Cairns, R. Walls, Fire detection in informal settlements, in: N. Chrysoulakis, T. Erbertseder, Y. Zhang (Eds.), *Remote Sensing Technologies and Applications in Urban Environments III*, SPIE, Berlin, 2018: p. 31. <https://doi.org/10.1117/12.2501885>.
- [11] R.S. Walls, A. Cicione, B. Messerschmidt, K. Almand, Africa: The Next Frontier for Fire Safety Engineering?, in: *15th International Conference and Exhibition on Fire Science and Engineering*, London, 2019: pp. 819–829.
- [12] A. Cicione, R.S. Walls, Towards a Simplified Fire Dynamic Simulator Model to Analyse Fire Spread Between Multiple Informal Settlement Dwellings Based on Full-Scale Experiments, in: *Interflam Proceedings*, 2019.
- [13] A. Cicione, R. Walls, Estimating time to structural collapse of informal settlement dwellings based on structural fire engineering principles, in: A. Zingoni (Ed.), *Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications*, CRC Press, 2019: pp. 1909–1914. <https://doi.org/10.1201/9780429426506>.
- [14] T. Dunn, R. Walls, Demolition engineering: Determination of the axial load capacity of steel columns weakened by horizontal and diagonal cuts, in: A. Zingoni (Ed.), *Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications*, CRC Press, 2019: pp. 2209–2214. <https://doi.org/10.1201/9780429426506>.
- [15] D. Mitchell, R. Walls, Demolition engineering: Lateral load carrying capacity of weakened steel beams, in: A. Zingoni (Ed.), *Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications*, CRC Press, 2019: pp. 2215–2220. <https://doi.org/10.1201/9780429426506>.

[16] J. Kruger, A. Cicione, F. Bester, M. van den Heever, S. Cho, R. Walls, G. van Zijl, Facilitating Ductile Failure of 3D Printed Concrete Elements in Fire, in: F. Bos, S. Lucas, R. Wolfs, T. Salet (Eds.), Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. Rilem Bookseries 28, Springer, Cham, 2020: pp. 449–458. https://doi.org/10.1007/978-3-030-49916-7_46.

[17] R. Walls, C. Kahanji, A. Cicione, M.J. van Vuuren, Fire Dynamics in Informal Settlement “Shacks”: Lessons Learnt and Appraisal of Fire Behavior Based on Full-Scale Testing, in: The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology, Springer Singapore, Singapore, 2020: pp. 15–27. https://doi.org/10.1007/978-981-32-9139-3_2.

[18] A. Cicione, K. Mazolwana, J. Kruger, R. Walls, Z. Sander, G. van Zijl, Effect of transverse and longitudinal confinement on the interlayer bond in 3D printed concrete at elevated temperatures: An experimental study, in: C. Montoya, D. Lange, C. Maluk, J.P. Hidalgo (Eds.), Proceedings of the 11th International Conference on Structures in Fire (SiF2020), The University of Queensland, Brisbane, Australia, 2020: pp. 184–195. <https://doi.org/10.14264/cf93893>.

[19] A. Cicione, C. Wade, M. Spearpoint, L. Gibson, R. Walls, Towards the development of a semi-probabilistic model of informal settlement fire spread using B-RISK, in: S. Grayson (Ed.), 16th International Fire & Materials Conference, Interscience Press, San Francisco, 2021: p. UnderReview.

[20] R. Walls, C. Kahanji, N. Flores Quiroz, A. Cicione, L. Gibson, M. Beshir, Y. Wang, D. Rush, Large-scale informal settlement experiment considering fire spread under opposed wind flow conditions, in: AOSFST 2021 – 12th Asia-Oceania Symposium on Fire Science and Technology, 2021: pp. 7–9.

[21] A. Cicione, P.J. Kruger, J.P. Mostert, R. Walls, G. Van Zijl, The effect of wind on 3D printed concrete interlayer bond strength based on machine learning algorithms, in: Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 2022: pp. 405–409. <https://doi.org/10.1201/9781003348443-66>.

[22] J. Claasen, R. Walls, A. Cicione, Large-scale fire testing of an innovative cellular beam and composite flooring structural system, in: Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 2022: pp. 1049–1054. <https://doi.org/10.1201/9781003348443-171>.

[23] S. Pillay, R.S. Walls, J.E. Van Der Merwe, Conceptualising the behaviour of 3D printed concrete structures in fire, in: A. Babafemi, Combrinck, R. W. de Villiers (Eds.), Young Concrete Researchers, Engineers and Technologists - YCRETS Proceedings, Cement & Concrete SA, Stellenbosch, 2023: pp. 128–135.

[24] P.C.J.W.R.J.G. Mnanzana, Experimental Testing and Numerical Modelling of Heat Transfer Through a Composite Sandwich Flooring System with Penetrations Exposed to Fire, in: S. Skatulla, H. Beushausen (Eds.), Advances in Information Technology in Civil and Building Engineering - Proceedings of ICCBCE 2022 - Volume 1, Springer, Cape Town, 2023: pp. 307–326.

[25] R. Walls, A. Oguaka, G. Jones, When a Silo Burns for a Month: Structural Assessment of a Severely Damaged Concrete Agricultural Structure, in: U. Turker, O. Eren, E. Uygar (Eds.), Sustainable Civil Engineering at the Beginning of Third Millennium: Proceedings of 15th International Congress on Advances in Civil Engineering (ACE2023), Springer, 2024: pp. 276–284. https://doi.org/10.1007/978-981-97-1781-1_25.

[26] R. Walls, Y. Shewalul, A.J. Babafemi, N. Flores-Quiroz, Eco-friendly vs Fire Safe? Conceptualising Fire Risk for Construction Systems Incorporating Waste and Biomass, in: U. Turker, E. Ozgur, E. Uygar (Eds.), Sustainable Civil Engineering at the Beginning of Third Millennium: Proceedings of 15th International Congress on Advances in Civil Engineering (ACE2023), Springer, 2024: pp. 36–45. https://doi.org/10.1007/978-981-97-1781-1_4.

[27] C. Devine, N. Flores-Quiroz, R. Walls, Combustion and free burning behaviour of recycled plastic pellets, J Phys Conf Ser 2885 (2024) 012022. <https://doi.org/10.1088/1742-6596/2885/1/012022>.

Books edited:

[1] R. Walls, A. Cicione, R. Pharoah, P. Zweig, M. Smith, and D. Antonellis, *Fire safety engineering guideline for informal settlements: Towards practical solutions for a complex problem in South Africa*. Stellenbosch: FireSUN Publications, 2020.

Book chapters:

[1] R. Walls, “1. Introduction,” in *Fire safety engineering guideline for informal settlements: Towards practical solutions for a complex problem in South Africa*, R. Walls, Ed. Stellenbosch: FireSUN Publications, 2020, pp. 1–8. [Online]. Available: <http://hdl.handle.net/10019.1/108926>

[2] A. Cicione, R. Walls, and D. Antonellis, “3. Understanding fire safety engineering,” in *Fire safety engineering guideline for informal settlements: Towards practical solutions for a complex problem in South Africa*, R. Walls, Ed. Stellenbosch: FireSUN Publications, 2020, pp. 23–52. [Online]. Available:

http://hdl.handle.net/10019.1/108926

[3] R. Walls and M. Smith, "4. Informal settlement fire incident timeline," in *Fire safety engineering guideline for informal settlements: Towards practical solutions for a complex problem in South Africa*, R. Walls, Ed. Stellenbosch: FireSUN Publications, 2020, pp. 53–62. [Online]. Available: <http://hdl.handle.net/10019.1/108926>

[4] R. Walls, "5. Case study: The 2017 Imizamo Yethu Disaster," in *Fire safety engineering guideline for informal settlements: Towards practical solutions for a complex problem in South Africa*, R. Walls, Ed. Stellenbosch: FireSUN Publications, 2020, pp. 63–70. [Online]. Available: <http://hdl.handle.net/10019.1/108926>

[5] R. Walls, "6. Interventions for Improving Fire Safety," in *Fire safety engineering guideline for informal settlements: Towards practical solutions for a complex problem in South Africa*, R. Walls, Ed. Stellenbosch: FireSUN Publications, 2020, pp. 71–111. [Online]. Available: <http://hdl.handle.net/10019.1/108926>

[6] R. Walls, "7. Fire safety for backyard dwellings in formal housing areas," in *Fire safety engineering guideline for informal settlements: Towards practical solutions for a complex problem in South Africa*, R. Walls, Ed. Stellenbosch: FireSUN Publications, 2020, pp. 112–120. [Online]. Available: <http://hdl.handle.net/10019.1/108926>

[7] R. Walls, "8. Conclusions and the way forward," in *Fire safety engineering guideline for informal settlements: Towards practical solutions for a complex problem in South Africa*, R. Walls, Ed. Stellenbosch: FireSUN Publications, 2020, pp. 121–128. [Online]. Available: <http://hdl.handle.net/10019.1/108926>

[8] T. Kiran *et al.*, "Post-fire behaviour and improving the performance of hot rolled open sections subjected to standard fire exposure," *Case Stud. Constr. Mater.*, vol. 16, no. March, p. e01021, 2022, doi: 10.1016/j.cscm.2022.e01021.

Reports, articles and technical documents:

[1] R. Walls, A. Elvin, Automating Structural Design: Getting Computers to Design, *Steel Construction*. 33 (2009) 32–34.

[2] R. Walls, Consol Nigel: A state-of-the-art glass factory takes shape, *Civil Engineering*. July (11AD) 51–53.

[3] C. Geldenhuys, R. Walls, Saving Money on Passive Fire Protection - Designing Composite Floors in Fire: the Slab Panel Method, *Steel Construction*. 39 (2015) 30–32.

[4] H. de Clercq, R. Walls, Student to engineer - easing the transition by way of the final-year design project, *Civil Engineering*. (2015) 43–48.

[5] P. Zweig, R. Pharoah, R. Eksteen, R.S. Walls, Installation of Smoke Alarms in an Informal Settlement Community in Cape Town, South Africa – Final Report, 2018.

[6] R. Walls, A. Moran, A. van Straten, Z. Sander, Knysna Fires Project – Analysis and lessons learnt from the homes and structures which were damaged or destroyed in the incident, Santam, Cape Town, 2019. <https://doi.org/10.13140/RG.2.2.18118.11843>.

[7] G. Forsyth, D.C. Le Maitre, R. Van Den Dool, R. Walls, R. Pharoah, G. Fortune, The Knysna Fires of 2017: Learning from the disaster, 2019.

[8] J. McGlade, R. Pulwarty, J. Abrahams, G. Bankoff, S. Cooper-Knock, F. Cotecchia, P. Desanker, W. Erian, E. Gencer, L. Gibson, S. Girgin, F. Hirsch, L. Hirst, R. Yamazaki-Honda, S. Jordan, E. Kopec, E. Krausmann, O. Guzmán López-Ocón, S. Lorito, F. Løvholt, W. Moufouma-Okia, A. Necci, J. Norris, K. Peters, A. Planitz, D. Rush, J. San Miguel, J. Schneider, R. Sengupta, J. Twigg, J. Vogt, R. Walls, R. Wardle, S. Williams, M. Wood, GAR: Global Assessment Report on Disaster Risk Reduction 2019, United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, 2019. <https://doi.org/10.13140/RG.2.2.23985.22889>.

[9] D. Rush, L. Gibson, G. Bankoff, R. Walls, G. Spinardi, S. Cooper-Knock, J. Twigg, L. Hirst, S. Jordan, Fire risk reduction in an urbanizing world, United Nations Office for Disaster Risk Reduction, Geneva, 2019.

[10] R. Walls, Appendix F: Fire Safety Environment and Regulatory Systems in Developing Countries: A Case Study on South Africa, in: T. Moullier, K. Sakoda, B. Meacham, T. Abrassart, A. McAllister, F. Krimgold (Eds.), *Urban Fire Regulatory Assessment and Mitigation Evaluation Diagnostic*, World Bank, Washington DC, 2020.

[11] R. Walls, J. Evans, N. Flores Quiroz, SAICE Infrastructure Report Card 2022 – fire engineering infrastructure summary report, *Civil Engineering*. (2022) 58–63.

[12] R. Walls, J. Evans, N. Flores Quiroz, SAICE Infrastructure Report Card 2022 - Fire Engineering Infrastructure, Johannesburg, 2022.

[13] SAICE, SAICE 2022 Infrastructure Report Card for South Africa, Johannesburg, 2022.

[14] Walls, R, Mat Kiah, MHB, Shewalul, Y, Flores Quiroz, NV, Kuhn, C, 2025. Fire Testing of Resilient and Sustainable Building Materials, Society for Fire Protection Engineers (SFPE) Foundation.

Examples of radio and television interviews conducted (more than 60 conducted):

- [1] AlgoaFM, The risk of mega-fires..., AlgoaFM. (2019). <https://www.algoafm.co.za/article/local/100679/high-risk-of-mega-fires-in-sa-knysna-fire-report> (accessed June 6, 2019).
- [2] CapeTalk, Stellies to offer postgrad degree in fire safety and engineering, (2018). <http://www.capetalk.co.za/articles/318173/stellies-to-offer-postgrad-degree-in-fire-safety-and-engineering> (accessed August 6, 2018).
- [3] CapeTalk, Fighting fire with education, (2018). <http://www.capetalk.co.za/podcasts/140/the-kieno-kammies-show/106818/fighting-fire-with-education> (accessed September 6, 2018).
- [4] GoodHopefm, Santam Knysna Fires Radio Interview, (n.d.).
- [5] Kfm, Stellies to offer postgrad degree in fire safety and engineering, (n.d.). <http://kfm.co.za/articles/2018/09/06/stellies-to-offer-postgrad-degree-in-fire-safety-and-engineering> (accessed September 6, 2019).
- [6] Radio2000, Santam Knysna Fires Radio Interview, Radio2000. (n.d.).
- [7] SAfm, An in-depth authoritative and independent report, commissioned by short-term insurer Santam ,into the devastating fires, (2019). <https://iono.fm/e/697277> (accessed June 7, 2019).
- [8] SAfm, Informal settlement fires in December, SAfm Interview. (2019).
- [9] BBC News, This fire alarm can alert your neighbours as well as you, People Fixing the World. (2019). <https://www.bbc.com/news/av/stories-50396207/this-fire-alarm-can-alert-your-neighbours-as-well-as-you>.
- [10] BBC Radio, How to stop fires destroying whole neighbourhoods, People Fixing the World. (2019). <https://www.bbc.co.uk/programmes/p07tqkc3>.
- [11] Reuters, Turning trash into bricks: South Africa's plastic gets new use, (2020). <https://www.reuters.com/video/watch/idOVBW5IXRN>.
- [12] Newzroom Afrika, Interview: 20 homes destroyed in 5 minutes, (2020).
- [13] CapeTalk, 20 homes ignited in 5 minutes - SU study shows devastating speed of shack fires, (n.d.). <https://www.capetalk.co.za/articles/398336/20-homes-ignited-in-5-minutes-stellenbosch-univeristy-experiment-devastating-speed-of-shack-fires> (accessed October 11, 2020).
- [14] Radio 702, FireSUN experiment shows shack fires move with devastating speed, (n.d.). <https://www.702.co.za/podcasts/121/weekend-breakfast-with-sara-jayne-king/369946/firesun-experiment-shows-shack-fires-move-with-devastating-speed> (accessed October 12, 2020).
- [15] Radio 786, World's largest shack fire experiment, Radio 786. (2020).
- [16] SABC Radio Africa, Interview: Large-scale shack experiment with 20 homes ignited in 5 minutes, (2020).
- [17] eTV Afternoon Show, World's largest shack fire experiment shows fires move with devastating speed, ETV. (2020).
- [18] SABC, Parliament Fire | Professor Richard Walls on the blaze, (2022). <https://youtu.be/W963UDpMP6g> (accessed March 24, 2022).
- [19] Radio 702, Structural fire damage of parliament, (2022). <https://www.702.co.za/podcasts/468/early-breakfast-with-africa-melane/588846/structural-fire-damage-of-parliament> (accessed March 24, 2022).
- [20] eNCA, Joburg Explosion | Discussion | Understanding the structural damage, (2023).
- [21] eNCA, Discussion | Explosion area to be declared state of disaster, (2023).
- [22] Channel Africa, A fire risk posed SA as installers of solar panels race to place power generating panels on roofs across the country, (2023).
- [23] SAFm, Fire Experts: Take caution when installing solar power energy, (2023).

Reviewing of technical papers:

Applied Thermal Energy, Case Studies in Thermal Engineering, Construction & Building Materials, Fire & Material, Fire Technology, Fire Safety Journal, International Journal of Disaster Risk Reduction, Journal of Building Engineering, Journal of Structural Fire Engineering, Kindling, SAICE Journal, Science & Justice, Structural Engineering International, Structures, Thermal Science and Engineering Progress, Water, and World Bank.

Researcher & Student Supervision:

Postdoc: Dr Charles Kahanji 2017-2018

Dr Nico de Koker – 2018-2019

Dr Antonio Cicione – 2020-2021

Dr Mohamad Pourbehi – 2020-2021

Dr Natalia Flores-Quiroz – 2021-2023

Dr Miss Hasimawaty Binti Mat Kiah – 2024-present

PhD: Cicione, A – “Fire dynamics in informal settlements” – 2017-2019 [MEng upgrade]

Narayanan, V – “Test methods for evaluating construction materials in informal settlements” – 2019-2022

Flores Quiroz, N – “Forensic investigations in informal settlements” – 2019-2021

Claassen, J – “Full-scale testing of the SAISC cellular beam structure” – 2018-2021

Wiid, F – The effect of additives for foam-water based automatic fire suppression systems in high pile tyre storage – 2020- . Co-supervisor.

Oguaka, AB – Fire behaviour modelling and analysis (to be confirmed) – 2021-2023

Du Plessis, M – Behaviour of passive protection products in timber joints – 2021-2023

Devine, C – Fire safety for plastic recycling facilities – 2021-2024

Sulon, D – Behaviour of timber connections in fire – 2019-2024. Co-supervisor.

Shewalul, Y – Behaviour of construction systems incorporating waste plastic in fire – 2022-2024.

Kakoma, E – Fire safety for developing world trains – 2023-

Van Wyk, R – Sustainable reinforcing systems in fire – 2025-

Fourie, S – Wildland spread modelling for the Western Cape – 2025-

MEng: Van Jaarsveldt, WJ – “Predicting the failure load of columns weakened to facilitate demolition of steel structures” – 2015-2016. Co-supervisor.

Kloos, M – “Structural behaviour of a new cellular steel beam structural system in fire” – 2016-2017

Marx, H – “Thermal behaviour of a new cellular steel beam structural system in fire” – 2016-2017

Volkmann, J – “Modelling of structures in fire using beam elements” – 2017-2018

Loffel, S – “Suppression of fires in informal settlements” – 2018-2019

Fourie, S – “Behaviour of the Voidcon flooring system in fire” – 2018-2019

Gous, M – “Behaviour of South African passenger trains in fire”- 2019-2021

Sander, Z – “Behaviour of recycled bottle EcoBricks structures in fire”- 2019-2021

Strauss, L – “Analysis of 3D structural frames in fire using the fire beam element (FBE)”- 2019-2020

Mnanzana, P – “Fire behaviour of a novel decking system in fire” – 2019-2025 . Co-supervisor.

Botha, A – “Behaviour of recycled construction materials in fire” – 2020-2021 . Co-supervisor.

Oosthuysen, C – “Design of modified steel shipping containers for ambient and elevated temperatures”. 2020-2021. Co-supervisor.

Van Biljoen, M – “Modelling and analysis of standard fire testing furnaces”. 2020-2021. Co-supervisor.

Whitehead, M – “Comparative analysis of fire test standards applicable to building materials”. 2020-2021

Oosthuizen, J – Behaviour of 3D printed concrete incorporating Resin8 – 2021-2022. Co-supervisor.

Pillay, S – Modelling of 3D printed concrete in fire – 2022-2022.

Van Wyk, R – Development of an electronic HTRIS – 2022-2023

Zulu, S – Modelling of composite timber-concrete slabs in fire – 2022-2023
 Vermeulen, Z – Development of a biomass intumescent paint – 2023-2024
 Liebenberg, A – Fire safety for hospitals – 2023-2024
 Kunutu, B – 3DPC fire safety – 2022-2024
 Human, M – Testing of SA plywood in fire – 2023-2025
 Whithead, M – Expansion strategies for fire safety companies into Africa – 2023-2024
 Becker, Y – Fire resistance of passenger train flooring systems – 2024-2025
 Pretorius, L – Experimental investigation on thermal runaway in lithium-ion batteries – 2024-2025
 Abdalhameed, A – Smoke emissions from sustainable construction materials – 2025-
 Du Preez, E – Fire spread modelling for informal settlements – 2025-
 Kuhn, C – Development of a controlled atmosphere calorimeter – 2025-

Approximately 4-5 final year (honours) research projects are also supervised each year. The table below summarises details.

	Current at end 2025	Graduated by end 2025	Total
BEng / Honours	0	40	40
Masters	3	25	28
PhD	4	9	13

Lecturing

- AD446 – Under-graduate course: Advanced Design Project
- SD424 – Design of structural steelwork
- BM254 – Building Materials
- Post-graduate course: Advanced Concrete Design
- Post-graduate course: Structural Fire Engineering
- Post-graduate course: Fire behaviour
- Post-graduate course: Fire Engineering 1
- Post-graduate course: Fire Engineering 2
- Post-graduate course: Techniques in Fire Engineering
- Various lectures on advanced geotechnical engineering, steel design and construction management.
- Refer to the YouTube channels listed above for various video lectures produced.

Research Grants and Funding Received From:

1. New Generation of Academic Personnel – Department of Higher Education & Training
2. NRF-DAAD
3. NRF Thuthuka Grant
4. The Ove Arup Foundation
5. Global Challenges Research Fund from the UK in conjunction with the University of Edinburgh.
6. SU Institute of Structural Engineering – Start-up funding
7. Various Stellenbosch University travel and research grants.

8. SA Institute of Steel Construction
9. Lloyd's Register Foundation – "Fire Engineering Education For Africa"
10. THRIP funding under the Department of Trade and Industry
11. Western Cape Government Department of Human Settlements
12. Voidcon Research and Development project under the Department of Trade & Industry
13. Royal Academy of Engineering / Lloyd's Register Foundation – Engineering skills where they are needed most
14. nGAP – New Generation of Academic Personal – Appointment of junior diversity staff member.
15. Structural fire engineering & Fire behaviour course – Run as research funding generating CPD courses.
16. Stellenbosch University Strategic Funding – Establishing MEng(S) in fire safety

Total funding generated: ±R24 million

University accolades – BScEng(Civil)

Wits University Awards: Cement and Concrete Institute Prize, Jere Jennings Prize for Civil Engineering, Jere Jennings Prize in Geotechnical Engineering, Desmond Midgeley Knight-Piesold Prize for Hydrology, Murray and Roberts Prize in Civil Engineering, R Kirkpatrick and Son Award, JSD Structural Engineering Prize, Dean's List, Best Academic Student in the class every year of BSc studies, best research presentation in engineering at the Wits Post-graduate Research Symposium.

CONSULTING EXPERIENCE PRIOR TO ACADEMIA

Employer: BSM Baker – Civil and structural engineers

Director and mentor: Geoff Baker (Pr. Eng.)

Period employed: January 2010 – December 2013: Full-time employment.

January 2014 – December 2015: Part-time consulting.

Position held: Structural engineer

During employment at BSM Baker extensive experience has been gained in the design, management, supervision and financial control of industrial, petrochemical and commercial structures. Key areas involved with include: steelwork design; concrete design; composite design; draughting; computer modelling of structures; foundation design; design of liquid retaining structures; design of glass bottle factories, batch houses and associated works; project management; budgeting; tendering; managing staff; financial control and invoicing on projects; site supervision; petrochemical facilities and fire-fighting design. Much time has been spent on construction sites and in existing or new buildings during projects. Recognition as a professional engineer (Pr. Eng.) was obtained in 2014, based on the experience and technical work undertaken.

Selected Consulting Projects

Important projects involved with while at BSM Baker include:

- Consol Nigel Factory – a R1.2bn greenfields glass factory. The batch plant, offloading pit, ancillary services, transfer gantries etc. were designed for this project. A great deal of time was also spent on tendering and then doing site supervision during construction.
- An R80m batch house for Nampak's new glass furnace line. All budgeting and design were personally completed.
- Numerous upgrades at the Consol Clayville, Pretoria, and Wadeville factories
- A R30m rebuild to the Consol Bellville factory
- A R2.5bn crude oil storage facility to be constructed in the Western Cape. All preliminary design, budgeting and management of the project were completed.
- Preliminary design work on a R1.8bn coal handling terminal to be constructed in Richard's Bay
- A R12.5m extension to a factory for Pferd South Africa, with complicated details of tying into 3 existing structures.
- Design of a tower for wind turbines
- Design of a numerous warehouses
- Various other industrial structures including substations, chemical containment vessels, gantries, bunkers etc.

Consol Nigel site during construction

Consol Nigel Batch Plant

Consol Nigel Furnace Building & Warehouse

Consol Nigel Batch Plant on completion

Batch Plant, Johannesburg

Batch Plant, Johannesburg

Storage building, Johannesburg

Pharmaceuticals warehouse, Johannesburg

Pharmaceuticals warehouse, Johannesburg

Manufacturing facility, Johannesburg

Manufacturing facility, Johannesburg

Church - Soweto

Mining processing structures – South America

SCHOOLING AND INTERESTS

School accolades: Head Boy, Top 50 Matric Student in South Africa for IEB, Top Academic Scholar at De La Salle, prefect, debating captain, representative on the Johannesburg Junior City Council.

Awards: Exceptional leadership, Outstanding Loyalty, All-Round Proficiency, Top tennis player, Public speaking, Geography, Additional Mathematics and Mathematics.

Sports in school: Cricket (1st team), tennis (1st Team), athletics, rugby, soccer and cross-country.

Cultural in school: Debating (captain), public speaking (best speaker), chess and drama.

Cultural outside of school: Represented South Gauteng for the Inter-provincial Maths Olympiad 2003.

Finalist of South African Harmony Gold Maths Olympiad.

Current interests: Teaching Sunday school, running a church home group, reading, mountain biking, running, hiking, theology and the outdoors.

SUMMARY OF EXPERIENCE, WORK & SCHOOLING

July 2020 – Present Full professor in structural and fire engineering – Stellenbosch University

Jan 2020 – July 2020 Associate professor in structural and fire engineering – Stellenbosch University

July 2017 – Dec 2019 Senior lecturer in structural engineering – Stellenbosch University

Aug 2014 – Jun 2017 Lecturer in structural engineering – Stellenbosch University

Jan 2014 – Dec 2016 PhD (Civil Engineering)

Jan 2010 – Dec 2013 Structural engineer with BSM Baker

Jan 2009 – Dec 2009 Full-time work on a full research MSc and separate GDE (Graduate Diploma in Engineering). Both degrees were completed and awarded in 2010 at Wits University.

Oct 2006 – Aug 2013 BTh (Bachelor in theology). SA Theological Seminary. Part-time, correspondence studies.

Jan 2005 – Dec 2008 BSc.Eng (Civil) (with distinction).

Jan 2004 – Dec 2004 Outdoors activity instructor at Frontier Centre (UK). Travelled through Europe.

Apr 1994 – Dec 2003 De La Salle Holy Cross College Junior / Senior Schools (Johannesburg)

Jan 1991 – Apr 1994 Bergvliet Primary School (Cape Town)