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Develop methods that allow 
machines to acquire language 
with as little supervision as 
possible.

Machine learning has become 
pervasive at E&E

Herman Kamper     



Machine learning has become 
pervasive at E&E

Dirk de Villiers     

Uses machine learning to 
estimate antenna geometries      
from large sets of simulated 
data, with particular application 
to radio telescopes.



Machine learning has become 
pervasive at E&E

Lanche Grootboom    

Use machine learning to reduce 
false alarm rate (CFAR) of radar 
tracking of a golf ball in the 
presence of clutter produced by 
fast rotating fan blades and 
fluorescent lights.



Machine learning has become 
pervasive at E&E

Armand du Plessis

Use machine learning for 
forecasting, monitoring and 
analysing renewable energy 
power production.



Machine learning has become 
pervasive at E&E

Rensu Theart      

Uses machine learning and 
virtual reality, for example in 
precision selection and analysis 
of 3D fluorescence microscopy 
samples.



Machine learning has become 
pervasive at E&E

Riaan Wolhuter    

Develops wireless sensor 
networks where the gathered 
data is used as input to machine 
learning systems.



Machine learning has become 
pervasive at E&E

Jaco Versfeld

Applies machine learning to 
marine sounds gathered using 
self-developed sensors.



The Digital Signal Processing Laboratory

 

● More than four decades of active in research 
into the processing of signals by computer 
hardware, including machine learning

● Three focus areas

– Speech and language processing

– Wildlife and ecological conservation

– Tuberculosis screening based on cough audio



The Digital Signal Processing Laboratory



Speech and language processing



Speech and language processing

• Focus on Southern African languages

• Focus on multilingual and low-resource 
speech and language

– South Africa is highly multilingual

– Most South(ern) African languages 
are low-resource

• Recent focus on code-switching

– Prevalent among multilingual speakers

– Even less resources because very rarely written



Speech and language processing

• South African soap operas are a 
rich source of multilingual speech 

– Frequent code-switching

– Spontaneous
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Speech and language processing

Some speakers use a very large number of language 
combinations in their dialogue



Speech and language processing

Three languages in one utterance



Speech and language processing
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Speech and language processing
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Wildlife and ecological conservation

• Rhinoceros behaviour monitoring

• Elephant behaviour monitoring

• Marine acoustic monitoring

• Monitoring of predators to assist livestock farming



Rhinoceros behaviour monitoring

• Rhinoceros poaching is a serious threat to the species

• If animal behaviour could be monitored in (near) real-time, abnormal 
behaviour could be detected

• Animal-borne sensor with on-board classification

• Communication network to retrieve data from sensors



Rhinoceros behaviour monitoring



Elephant behaviour monitoring



Elephant behaviour monitoring

• Attaching a sensor to a wild animal is difficult

– Requires capture – risky to animal and people

– Power source – batteries require replacing

– Radio communication is challenging

• Elephant communicate over long distances using vocalisation (rumbles)

• Automatic detection and classification of these vocalisations might assist 
conservation



Elephant behaviour monitoring
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Elephant behaviour monitoring
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Elephant behaviour monitoring
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Marine acoustic monitoring



Marine acoustic monitoring

• The biodiversity of an ecosystem is reflected in the sounds that are present

– Detect presence of species

– Monitor health of ecosystem

• Monitoring this in the long term can alert us to damage by:

– Overfishing and/or poaching

– Noise pollution

– Environmental pollution

• Long-term marine sounds have been captured by specially-constructed 
hardware  

• First proof of year-round presence of Bryde’s whales in False Bay (Versfeld)



Marine acoustic monitoring



Marine acoustic monitoring



Monitoring of predators to assist 
livestock farming



Monitoring of predators to assist 
livestock farming

• Predation of sheep livestock by the black-backed 
jackal is increasing in rural South Africa

• Existential threat especially to small-scale farmers

• Current interventions, such as culling and poisoning

– have serious environmental impact 

– are ineffective

• Develop bio-telemetry system to

– monitor (little is known)

– propose non-lethal interventions

• Benefits to environment and to food security



Monitoring of predators to assist 
livestock farming



Monitoring of predators to assist 
livestock farming



Cough audio for tuberculosis screening



Cough audio for tuberculosis screening

• Tuberculosis (TB) remains the world’s deadliest infectious disease

• Each year, 10m people are newly infected, and 1.5m die      [WHO, 2025]

• TB occurs disproportionality in low or middle-income countries, including  
South Africa  

• This continues although TB is both preventable and curable

• One reason is that TB often remains undiagnosed because 

– Lack of healthcare infrastructure (clinics & labs)

– Lack of medical personnel

• Accurate tests exist (Xpert MTB/RIF) but these remain expensive, require 
specialist lab facilities and specialist trained personnel

• There is a need for a simple, low cost screening method for TB



• Medical practitioners maintain that  it is not possible to tell TB from the 
sound of the cough

• Can a machine tell the difference?

Cough audio for tuberculosis screening

TB POSITIVE

TB NEGATIVE



• Gathering data is very challenging

– Requires medical infrastructure

– Ground truth must be established – lab tests

– Variable signal-to-noise ratio

– Variable data connectivity

• A team of ~30 people 
to collect data

• Collection took more 
than two years

• Culture and GeneXpert Ultra used for ground truth

Cough audio for tuberculosis screening

TB+ TB- Total

Patients 86 379 465

Coughs 1 205 5 553 6 758

Duration (mins) 8.27 37.93 46.2



• Recording at several primary health care clinics

– Three near Cape Town

– Two near Kampala, Uganda

• Demographic and clinical data collected first

• Also sputum, oral swab, blood, urine

• Then, patients asked to cough 5-10 times 

• Recording setup used smartphone app and 
external studio microphone

• Data synchronised to cloud, from where it 
is retrieved for annotation

Cough audio for tuberculosis screening



• Experiments ongoing using several neural architectures

• Currently performance ~70%

Cough audio for tuberculosis screening

Cough audio
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Photo by Stefan Els
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